GE Power Conversion

MV Motor Designs & Specifications

IEEE/IAS Atlanta Chapter May 18, 2015

Presented by Bob.Krusemark@ge.com

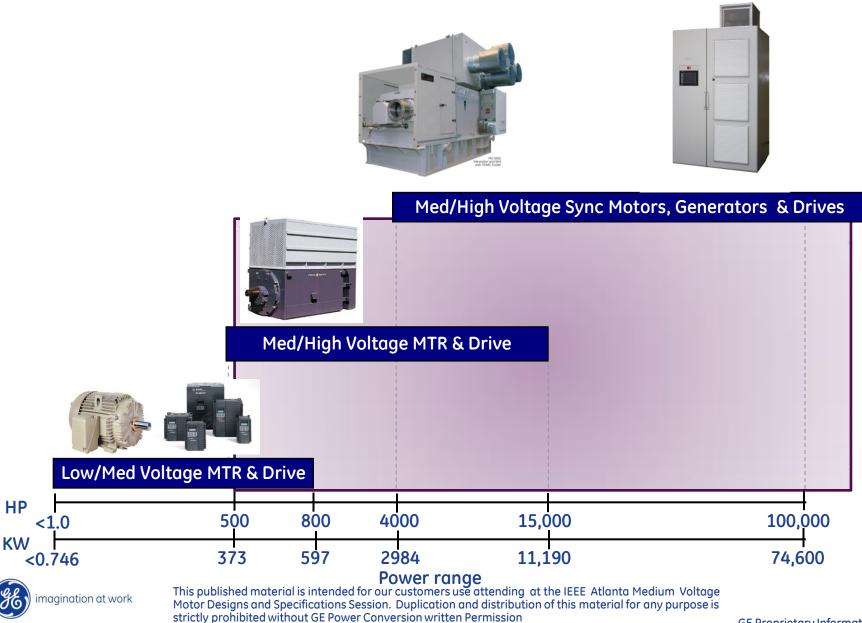
This published material is intended for our customer use attending this IEEE MV Motors & Specification seminar only. Duplication and distribution of this material for any purpose is strictly prohibited.

Syllabus

Part 1 – MV Motor Designs

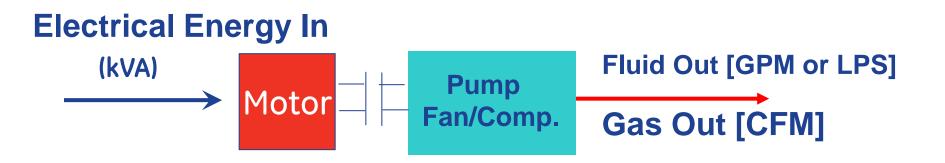
- Motor Designs
- Construction

Part 2 – Standards (brief outline)


- Industry Standards
- Data Sheets

Part 1 Motor Designs

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission


Medium (M&H) Voltage Motor Range

What is a Motor?

It is an Electrical Machine that converts Electrical energy to Mechanical energy very efficiently!

Conversion of Energy is as high as 98%

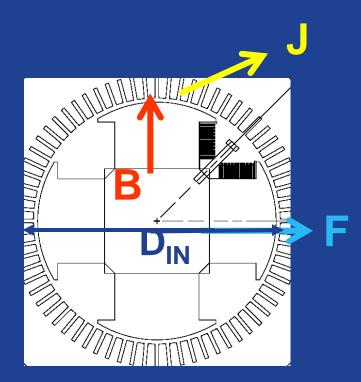
Maxwell's Equations

I. Gauss's Law for Electricity

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

- II. Gauss's Law for Magnetism $\oint \vec{B} \cdot d\vec{A} = 0$
- III. Faraday's Law for Induction

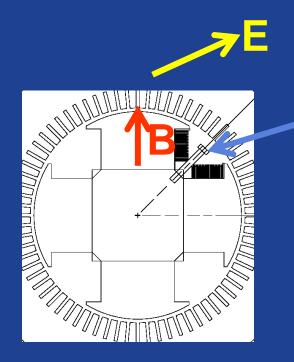
$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$$


IV. Ampere's Law

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i + \frac{1}{c^2} \frac{\partial}{\partial t} \int \vec{E} \cdot d\vec{A}$$

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Lorentz Force



Force = $\Phi \times J$

Where:

- Φ = Total Air Gap Flux
 - $= \mathsf{B} \times \Pi \times \mathsf{D}_{\mathsf{IN}} \times \mathsf{L}$
- **J** = Specific Current
 - (Amp. Turns/Meter) Torque = $F \times D_{INSIDE} / 2$
 - ∞ B x J x D_{IN}² x L
- **Power = Torque x Speed**

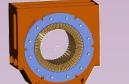
Faraday's Law

A Moving Field (B) Generates a Voltage (E) on a Stationary Conductor.

N = No. of Turns BA = Magnetic Flux $Voltage_{Generated} = -N \qquad \bigtriangleup BA$

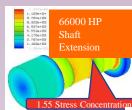
A Few Useful Equations

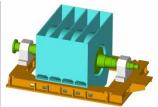
- Amps (3 ph.) = Hp *0.746 / (1.732 * kV * Eff. * PF)
- Hp (shaft) = [kVA * PF * Efficiency] / 0.746 or
- Hp = kW/0.746
- kVA (motor) = [1.732 * L-L Volts * Amps] / 1000
- kW= Hp* 0.746
- Speed (Synchronous) = RPM_{sync} = 120 * Hz / # Poles Temperature = ${}^{0}C$ = (${}^{0}F$ -32) * 0.555 or ${}^{0}F$ = (${}^{0}C$ * 1.8) +32
- Torque (ft-lbs) = HP * 5252 / RPM
- Torque (N-m) = kW * 9545 / RPM

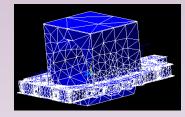

Design Tools

Design Tools

- Electromagnetic Finite Element Analysis
- 3 D Solid Modeling
 - ✓ 4 Pole Rotor


✓ Wound Stator Model





• Stress Analysis

• Dynamic Modal Analysis

Base Design Modification Increased Natural Frequency From 33 Hz to 40 Hz

Where Are They Used?

By Industry

- Petroleum
- Chemical
- Pulp and Paper
- Mining
- Metals
- Cement
- Utility
- Marine

By Application

- Centrifugal Compressor
- Reciprocating Compressor
- Pulpwood Refiner
- Chippers
- Grinding Mill
- Axial Compressor
- Pumps
- Fan / Blower
- Steel Rolling
- Propulsion

A Few Pictures...

Pulpwood Refiner

Mining -Grinding Mill

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Many Applications...

Metal Rolling

Ship Propulsion

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Driving Compressors

On a Pipeline

At a Refinery

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

More Compressors...

Reciprocating Compressor

Centrifugal Compressor

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Types of Motors

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Induction Vs. Synchronous

Induction

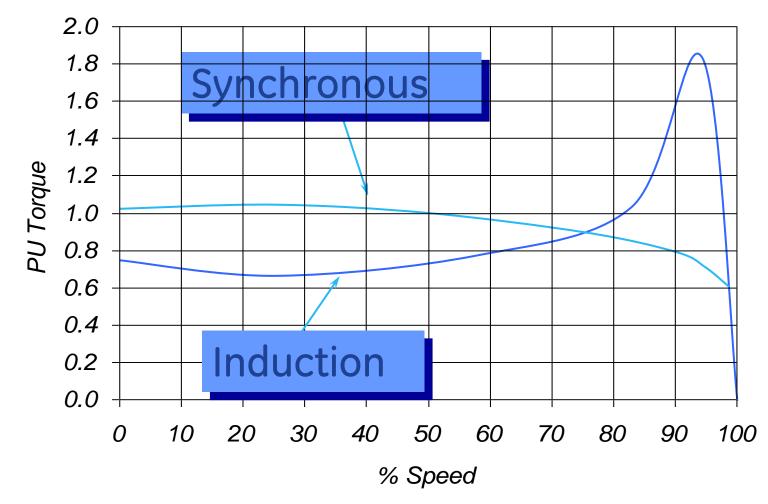
- Lower capital cost (except 'big' machines)
- Simpler construction
- Self excited

<u>Synchronous</u>

- High efficiency
- Power system support (unity and leading PF designs)
- Starting & operating performance are independent (low inrush designs)
- Constant speed (no slippage)
- Large power output available

This published material is intende Motor Designs and Specifications strictly prohibited without GE Power Conversion written Permission

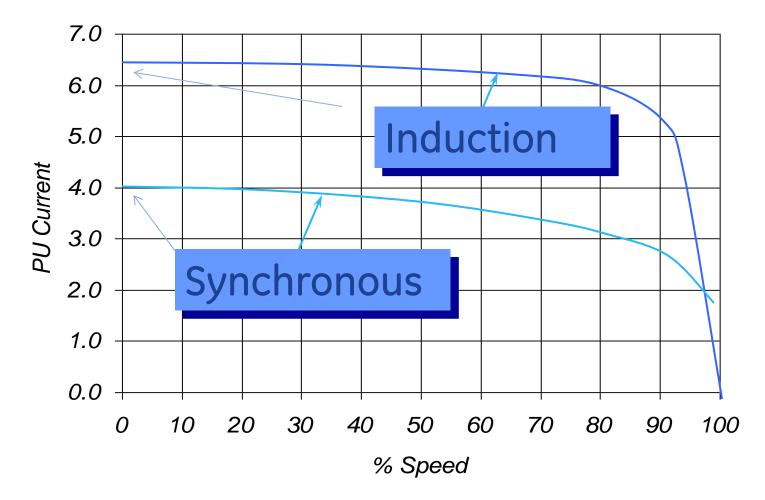
	Synchronous	Induction
Horsepower	15,000	15,000
Voltage	13,800	13,200**
Power Factor	1.0	0.88
RPM	1,800	1,780
Full load current	476	561
Full load efficiency	98.4%	97.0%
Full load losses	182kW	*346kW


- Additional annual operating cost (@5¢/kW-Hr) = \$72,000

- 20 Year operating savings using a synchronous motor = \$ 1,436,600.

** API 546 3rd Edition states bus voltage = motor voltage

imagination at work


Typical Torque/Speed – 4 Pole

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Typical Current/Speed - 4 Pole

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Motor Design Considerations & Construction

Motor Design Considerations

Electrical Requirements

- 1) Application
- 2) Power (hp or kw) & Speed
- 3) Torque
 - 1. Variable
 - 2. Constant
 - 3. Low, Medium, High
- **4) Motor Voltage** 2300, 2400, 3000, 3300, 4000, 4160, 6000, 6900, 10000, 11000, 12470, 13200, 13800
- 5) Volt Drop at Motor Terminals
- 6) Voltage Drop at Utility
- 7) **Power Factor** : Lag (-0.88) to Leading (+0.80)
- 8) Frequency 50, 60, or higher
- **9)** Inrush 650%, 500, 450, 400, 350, or less

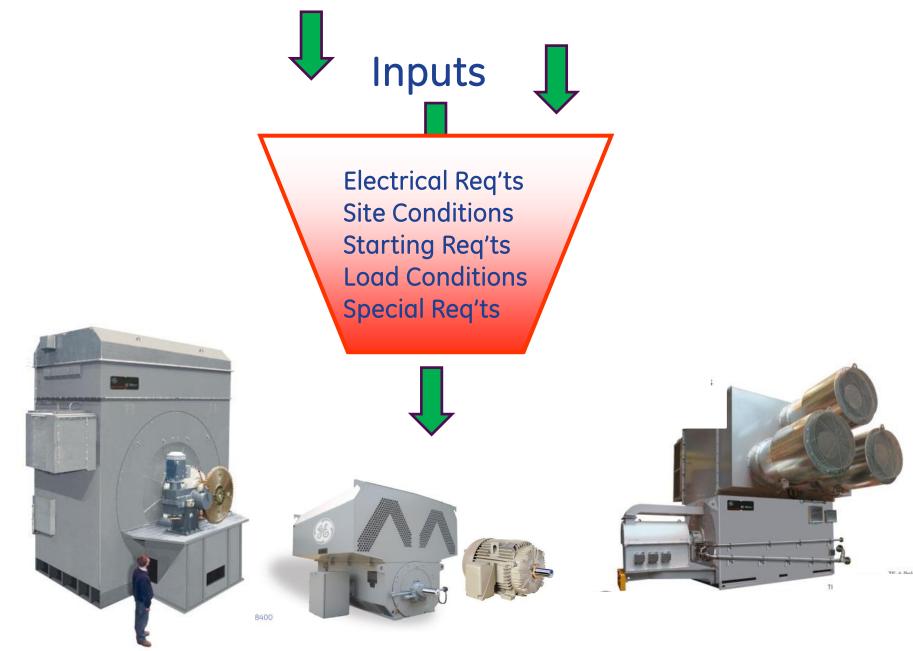
Starting Arrangement

- 1. DOL
- 2. Reactor
- 3. Auto-Transformer
- 4. Reactor Capacitor
- 5. Soft Starter VVFF
- 6. Soft Starter VVVF
- 7. Adj. Freq. Drive (VVVF)

Load

- 1. Unloaded, Partial, or Fully Loaded
- 2. NEMA Load Inertia ¹/₂, 1 x, 2 x, 3x, or more
- 3. Service Factor 1.00, 1.15, 1.25, or greater

Site Conditions


- 1. Ambient 40° C, 45° C, 50° C, or higher
- 2. Elevation 0-3300 ft., or higher

Enclosures

- 1. ODP
- 2. WP1
- 3. WP2
- 4. TEWAC
- 5. TEAAC
- 6. TEFC
- 7. TEFV/TEPV

Special Conditions

- 1. No. of Starts: 2 cold/ 1 hot, 3 /2, or more
- 2. Acceleration/Safe Stall time
- 3. Vibration Limit
- 4. C Factor
- 5. OEM, EPC, End User Spec and/or Industry Specs

Motor Design & Construction

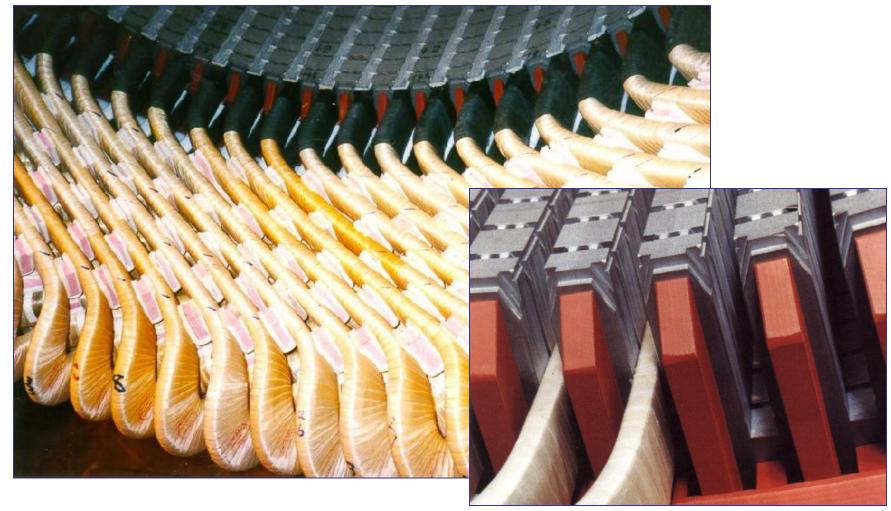
<u>Common Components</u>

- Stator
- Rotor
- Bearings
- Enclosures (TEWAC & TEAAC preferred)
- Protection Devices (RTD's, CT's, SC's, Vibration Probes, Leak Detectors, Differential Press. Switch, Space Heaters, Diode Fault Detector, ...)
- Main Conduit box and auxiliary boxes

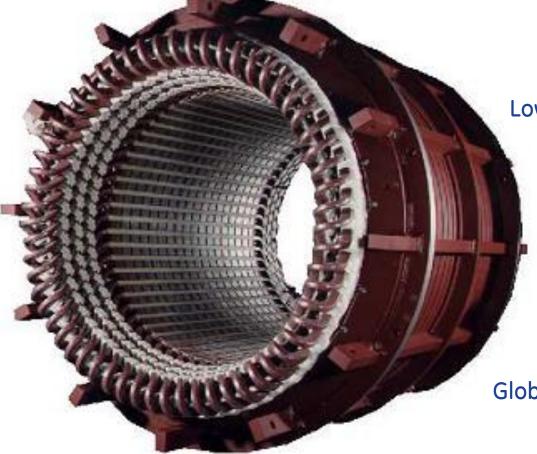
Motor design - Three Basic Components

1. Stator Insulation system

- Medium and high voltage
- Vacuum Pressure Impregnation [VPI insulation system]


Stator Coil – Cutaway View

Mica Groundwall Tape Mica Turn Tape **Strand Enamel Copper Conductor**


This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Wound Stators

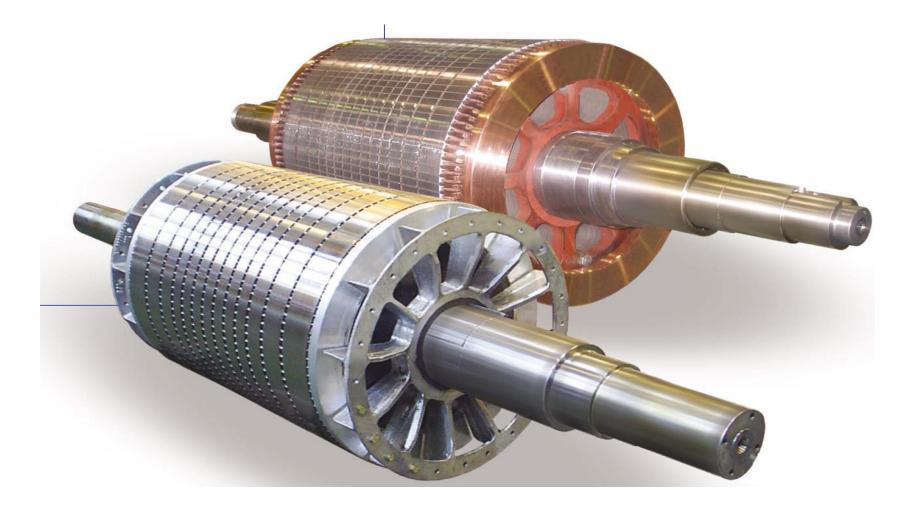
Wound Stator

Low loss lamination grade

No core-pack welding

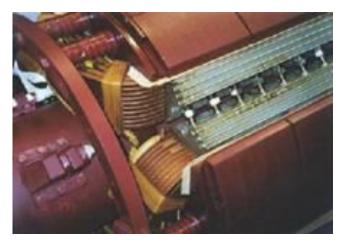
Individual Slot Wedging

Global VPI with Rotate Cure


Motor design - Three Basic Components

2. Rotor design

- Induction Squirrel Cage

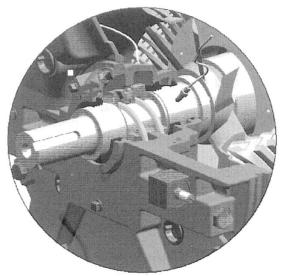

- Aluminum bar
- Copper Alloy bar
- Special material bar
- Synchronous
 - Salient \geq 4 poles
 - Cylindrical 2 & 4 poles

Aluminum & Copper Rotors

Example of Synchronous Rotors

SPP 1 - 4 Pole Laminated Rotor

SPP 3 - Multi-pole Laminated Rotor


Motor design - Three Basic Components

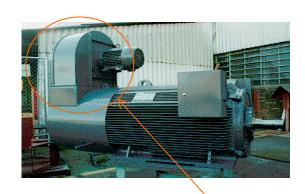
3. Bearing system design

- Rolling element
- Hydrodynamic (Sleeve) element
- Non-insulated & Insulated bearings
- Lubrication
 - Grease
 - Oil bath self–lubricated &/or forced fed lubrication

Bearing Types Hydrodynamic (Sleeve) - Infinite Life \$\$\$

- Pedestal
- End bracket

Roller (anti-friction) – Low Power/Low Centrifugal Forces [Finite Life] \$

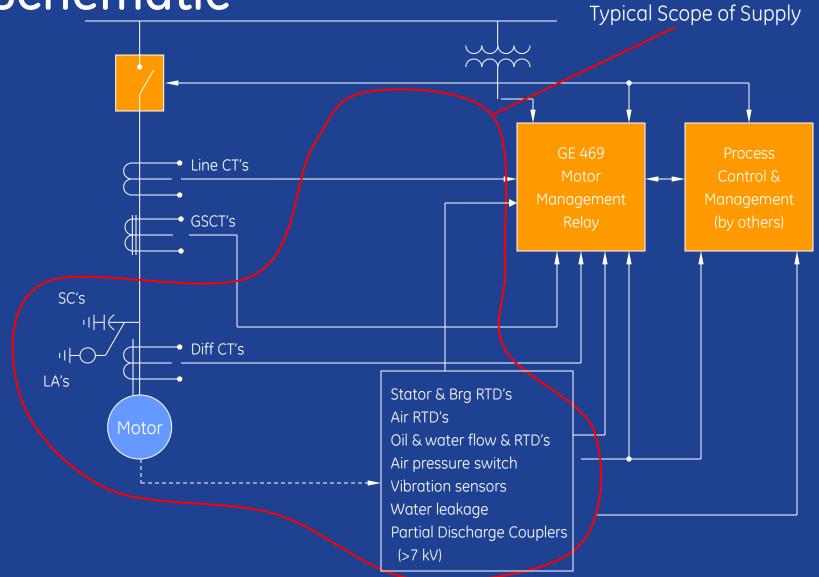


This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Enclosure Types

TEWAC

TEFC 4 AFD



This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage ODP-G Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

Induction Motor Protection Schematic

Specifications

Specifications Referred to with Motors and Generators

Reference Codes:

- ANSI
- API 541 5th Ed. & 547 (Induction) & 546 3rd Ed. (Synchronous)
- CSA
- IEC
- IEEE 112 (Induction) & 115 (Synchronous)
- NEMA MG1

Example (Typical) Specification

Motor Data #1	Application: Pulp Refiner
Rated Power	HP or kW
Rated Power Factor	Lagging for Induction (Leading to Unity – Sync Motor)
Phases	3
Frequency	50, 60 Hz, or Adj. Freq.
Poles	4
Speed	1800
Voltage	11 kv* (50 hz) or 13.8 kV *(60 hz)
Overspeed	120% of running speed
Insulation Class	F
Winding Temperature (rated power)	Class B
Number of main terminals	3
Sound pressure level @ 1m	85 dB(A) average

* There exceptions that require consulting with manufacturer

Example (Typical) Specification

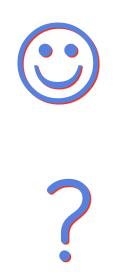
Site Data					
Environment	Desert/ Marine/Salty/Arctic - FPSO				
Site Area Classification	Hazardous or Non - Hazardous				
Altitude	< 3300 ft. (1000 m)				
Wind Speed	Plus 93 mph (150 km/h)				
Design Temperature (Tropical)	15 (ISO) or 40°C ambient; 30°C fixed water temp				
Design Temperature (Arctic)	-20°C ambient; 10°C variable water temp				
Temperature Range min max (tropical)	5/40°C				
Temperature Range min max (arctic)	-20/20°C				
Relative Humidity	60 to 100%				
Pitch and Roll (Water Vessel)	Pitch Max ± 10° Roll Max ± 15°				

Example (Typical) Specification

Generator Data #2	
Type of Construction	IM1005
Cooling Type	TEWAC or CACW (IC8A1W7)
Neutral	Grounded
Rotation facing from Non Drive End looking towards driven equipment	CW
Phase sequence	3 Phase
Bearing Type	Sleeve
Bearing Housing Type	Bracket or Pedestal
Vibration limits at site	NEMA, API 541/46 or ISO10816
Lubrication	Self Lube or Forced Fed from separate lube system
Paint Spec	Mfr. Std.
Color	Manufactured Standard
imagination at work This published material is intended for our custo	omers use attending at the IEEE Atlanta Medium Voltage

Further Specification Items

- Vibration limits in factory
- Factory tests
- Terminal Boxes
- Cooling System
- Lube Oil System
- Auxiliary Equipment
- VT's and CT's
- Accessories including Stator & Bearing RTD's
- Vibration Probes
- Motor Protection (Surge Cap, L. A., Partial Discharge Couplers, Leak Detectors,..


Page 1 (Partial)

INDUCTION MACHINE				JOB NO. ITEM / TAG NO.					
API 541 5th Edition DATA SHEETS			PURCHASE ORDER NO.						
H.	Petroleum U.S. CUSTOMARY UNITS			REQ. / SPEC. NO.					
1	Institute PURCHASER'S SELECTION	IS	REVISION	NO.	DATE		BY		
	Bold Italics = Indicate Default Select	tion	REV. DA	TE	PAGE	1	OF	12	
1	USER		APPLICA	TION					
2	LOCATION		SUPPLIER / MOTOR MFGR. /						
3	PROJECT NAME		SUPPLIEF	R/MFGR.REF.	NO.	/			
4	SITE / PLANT		MOTOR 1	AG NO(s)					
5	Applicable To: \triangle Proposal ∇ Purchase \triangleright As Designed	As Built	TOTAL Q	TY. REQUIRED					
	Bold Italics =	Indicate the	Standard'	s Default Sele	ection				
		GE	INERAL						
6	Applicable Standards (1.3.2; 1.6): North American (i.e., AN	SI, NEM A)	Use SI (m	netric) data she	ets for International St	andards (IEC	C, etc.)		
7	BASIC DESIGN (SECTION 2): Pow er / RPM Ra	tings are Spe	ecified by:	O User/Proj	ect O OEM O	Other			
8	Nameplate Pow er Rating (2.2.1.1):		O kW	Motor Speed:	RPM (S	Synchronous	s)		
9	Nameplate Voltage/Ph/Hz Rating (2.2.1.2):	Volts (2.2.	1.2)	F	hase	Hertz			
10	Nameplate Ambient Temp. Rating (2.3.1.1,b): 40°C O Othe	er:	°C (O Minimum	Rated Operating Ambie	ent Temp.		°C	
11	Insulation Class (2.3.1.1,a): Class F	er Class:		O Minimum	Rated Storage Ambien	t Temp.		°C	
12	Stator Temperature Rise (2.3.1.1,b)* Class B Othe	er:		*(See Data Sh	eet Guide)				
13	Duty (2.1.2): Continuous	er:							
14	Voltage and Frequency Variations (2.2.1.3): Per NEM A	Other:							
15	Motor Pow er Source: Sine Wave Power	er (complete	below sect	ion) 🔾 Solia	d State Soft Starter - C	omplete rela	ted data c	on Page 6	
16	Adjustable Speed Drive Conditions, if applicable (2.1.4; 2.1.5;	2.3.1.2;):							
17	O If available, describe ASD type / topology:								
18	ASD only operation	DOL Start c	apability	O ASD with	n Bypass to Utility Freq	uency			
19	O Variable Torque Speed Range: Min Speed	RPM	<u> </u>	ft-lb Ma	ax. Speed	RPM		ft-lb	
20	Constant Torque Speed Range: Min Speed	RPM			ax. Speed	RPM		ft-lb	

imagination at work

		INDUCTION MACHINE	JOB NO. ITEM / TAG NO.						
不	American	API 541 5th Edition DATA SHEETS	PURCHASE ORDER NO.						
_ <i>L</i> ,	Petroleum	U.S. CUSTOMARY UNITS	REQ. / SPEC. NO.						
	Institute	PURCHASER'S SELECTIONS	REV ISION N	0.	DATE			BY	
_		Bold Italics = Indicate Default Selection	REV. DATE	<u> </u>		PAGE	7	OF	12
	ANALYSIS, SHOP INSPECTION, AND TESTS								
1	O (m) Indi	icates item is not required 4 (v) Indicates item	n applies to onl	y one m	achine in a multiple	machine	application	/ order	
2	(1) Indicates Purchaser required item (t) Indicates item applies to all machines in a multiple machine application/order								
3	Mal	ke selections in only one column for each item	Required	<u>l</u>	Witnesse	<u>d</u>	<u>Obs</u>	served	<u>1</u>
4			(4.1.1; 4.1.3.3; 4.3.1) (4.1.3; 4.1.3.1; 4.3.1.1) (4.1.3; 4.1			. <u>1.3.2; 4.3.1.1)</u>			
5	Coordination Me	eeting (6.2)	Ο						
6	Design Review	(6.4)	Ο						
7	Lateral Critical	Speed Analysis (2.4.6.2.1; 6.6.2, b)	0						
8	Torsional Analy	ysis Data (2.4.6.2.2) Analysis By:	0						
9	Submit Test Pro	ocedures and Acceptance Critreia 6 Weeks Before Tests (4.3.1							
10	Demonstrate A	ccuracy of Test Equipment (4.3.1.15)	0	4	O	4		0	4
11	Stator Core Tes	st (4.3.4.1)	0	4	0	4	·····	0	4
12	Surge Compa	arison Test - required for all machines (4.3.4.2)		◀	0			0	
13	Special Surge 7	Test of Coils (4.3.4.2.1)	0	4	0	4		0	4
14	Pow er Factor T	Tip-Up Test (4.3.4.3)	0	4	0	4		0	4
15	Stator Inspection	on Prior to VPI (4.3.4.5)	0	4	0	4		0	4
16	Sealed Winding	g Conformance Test (4.3.4.4)	0	4	0	4		0	4
17	Partial Discharg	ge Test (4.3.4.6)	0	4	0	4		0	4
18	Rotor Residual	Unbalance Verification Test (2.4.6.3.4)	0	4	0	4		0	4
19	Unbalance Res	ponse Test (4.3.5.3) (Purchaser must select one of below opti	ions) O	4	0	4		0	4
20	O Purchaser	r to supply Half-Coupling or Mass Moment Simulator required for		Purcha	aser to supply data	for Mac			ied Simulator
21	Vibration Test v	with Half -Coupling (4.3.1.5) (req'd if vendor to mount cplg. 2.4	4.9.4) O	4	O	4		0	4
22	Inspection of Ed	quipment and Piping for Cleanliness before Final Assembly (4.2	.3.3) 🔾	4	O	4		0	4
23	Routine Test	- Alw ays required for all machines (4.3.2)		◀	0		·····	0	
24	Bearing Di	imensional & Alignment Checks Before Tests (4.3.2.1, k)	0	4	0	4		0	4
25	Bearing Di	imensional & Alignment Checks After Tests (4.3.2.1, I)	0	4	0	4		0	4
26	Purchaser Sup	plied Vibration Monitoring / Recording (4.3.3.7)	0	4	0	4		0	4
27	Complete Test ((4.3.5.1.1) Includes all the follow ing:	Ο	4	0	4		0	4

Partial Page

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission

GE Energy Power Conversion

We're at work making change happen

IEEE/IAS Atlanta Seminar on MV Motor Designs & Specifications

This published material is intended for our customers use attending at the IEEE Atlanta Medium Voltage Motor Designs and Specifications Session. Duplication and distribution of this material for any purpose is strictly prohibited without GE Power Conversion written Permission